Design for Kinematic Mounts

In the design below, using 1/16" alumina or zirconia rods as spring contacts...

Spring Parameters:

Design Equations

Beam profile (curved bottom defined by equation, horizontal flat on top):

$$y(x) = -2\sqrt{\frac{3}{2}\frac{F}{\eta\sigma_y b}(L-x)}$$

Beam length:

$$L = \frac{3}{2} \frac{1}{\eta \sigma_{y}} \left(\frac{4}{5} E(1.15\delta)\right)^{2/3} \left(\frac{F}{b}\right)^{1/3}$$

- The adjustment factor 1.15 applied to δ adds a little extra length to help account for the discrepancy between the small deflection beam theory calculation and the actual large deflection behavior, as well as the practical necessity of non-zero thickness near the tip of the beam.
- Derivation of these design formulas is shown below.

Top Spring (which forces ball into groove)

Spring contact radius	R _s = 1.58mm					
Max spring deflection	δ = 2.0mm					
Max spring force	F = 15N					
Yield stress	σ _y = 880MPa					
Max allowed stress ratio	η = 0.55 (i.e. 484MPa)					
Modulus	E = 113GPa					
Spring beam width	b = 4.5mm					
Required beam length	L = 16.25mm (calculated)					

Bottom Spring (when present, counteracts weight of hanging mass)

Spring contact radius	R _s = 1.58mm						
Max spring deflection	δ = 1.75mm						
Max spring force	F = 2.0kg * 9.81m/s = 19.6N						
Yield stress	σ _v = 880MPa						
Max allowed stress ratio	η = 0.55 (i.e. 484MPa)						
Modulus	E = 113GPa						
Spring beam width	b = 4.5mm						
Required beam length	L = 16.25mm (calculated)						

Cantilever Spring Nov 30, 2010 Constant Stress "Topored" TS. x=0 DESCRIBES tHE CORRECT CONSMIT STRESS PROFILE -y(x) CONSTANT STRESS CONDITIONS from $T = \frac{My}{I} \implies M(x) \frac{y(x)}{T(x)}$ $\Rightarrow M(y) = \frac{F(L-x)}{\frac{1}{12}b(2y(x))^3}$ $M(y) = \frac{F(L-x)}{\frac{1}{12}b(2y(x))^3}$ $= \underbrace{\underbrace{3}_{2}}_{5} \underbrace{\underbrace{L-x}}_{7(r)^{2}} = i \underbrace{\underbrace{3}_{2}}_{7(r)^{2}} \underbrace{\underbrace{F}}_{7(r)^{2}} \underbrace{(L-x)}_{7(r)}$ SPEZIFICATION OF F= KS (SPRING CHARACTERISTICS): from $S = \frac{FL^3}{3ET}$, approximate $I = \frac{1}{L} \int_0^L I(k) dk$ $\Rightarrow \frac{FL^{4}}{3ES} = \int_{-\frac{1}{12}b(2g(x))^{3}}^{L} dx = \frac{2}{3}b\left(\frac{3}{2}\frac{F}{\eta(q_{b})}\right)^{3/2}\int_{-\infty}^{L}(L-x)^{3}dx$ $= \frac{2}{3} b \left(\frac{3}{2} \frac{F}{7/5/6} \right)^{3/2} \left(-\frac{2}{5} \left(L - \chi \right)^{5/2} \right) \Big|_{b}^{L} = \frac{4}{15} b \left(\frac{3}{2} \frac{F}{7/5/6} \right)^{3/2} L \frac{5/2}{2}$ => $L = \left(\frac{4}{5} E S \left(\frac{E}{5}\right)^{1/2}\right)^{2/3} \frac{3}{2} \frac{1}{775}$ $\Rightarrow \left[L = \frac{3}{2} \frac{1}{\eta \tau_1} \left(\frac{4}{5} \varepsilon \varepsilon \right)^{2/3} \left(\frac{F}{5} \right)^{1/3} \right]$ SETS THE REQUIRED BEAM LENGTH FOR A SPECIFIED COMMINATION OF My = max fraction of yield shers Note that this design analysis tends to order predict 5 by about 15%. Thus it may be useful to replace 5 with 5t = C. Steared, where * E modulus = max deflection S = MAX Force F C= 1.15 = been width

Contact Stress Calculations

- For the top kinematic mounts (control X,Y,Z):
 - The spherical ball (5/32" diameter, silicon nitride) rides in an internal radius cylindrical groove (Ti 6Al-4V) of radius 2.5mm.
 - The spring contacts are ceramic (alumina or zirconia) cylinders (1/8" radius) riding on a generally planar guide surface (Ti 6AI-4V).
- For the bottom kinematic mounts (control X only):
 - The ball (1/2" diameter, silicon nitride) runs against a planar flat guide.

Sphere-	on-Cyl	linder (<u>Contact</u>																	
BALL GROOVE																				
E1	nu1	D1	E2	nu2	R2	D2	Syc2	V1	V2	Q	A/B	1/A	- 1/e dE/dE	а	theta	F (applied)	F	Pmax	~Taumax	~FOS2 (tresca)
GPa	-	mm	GPa	-	mm	mm	МРа	1/Pa	1/Pa	1/Pa	-	т	-	mm	deg	Ν	N	МРа	МРа	-
345.0	0.24	3.97	113.8	0.34	-2.50	-5.00	880	8.7E-13	2.5E-12	######	0.206	0.019	1.5450	0.138	45	25.0	17.7	443	133	3.31
345.0	0.24	12.70	113.8	0.34	1E+06	2E+06	880	8.7E-13	2.5E-12	######	1.000	0.013	0.7854	0.063	n/a	5.0	5.0	602	181	2.44
The value -1/e dE/de is from a lookup table (Puttock and Thwaite 1969).																				
Cylinder-on-Plane Contact																				
SPRING CONTACT			GU	GUIDE SURFACE			WIDTH													
E1	nu1	D1	E2	nu2	R2	D2	Syc2	L	b	F	Pmax	~Taumax	~FOS2 (tresca)							
GPa	-	mm	GPa	-	mm	mm	МРа	тт	mm	N	МРа	МРа	-							
113.8	0.34	3.18	300.0	0.21	1E+06	2E+06	880	4.50	0.011	25.0	319	96	4.60	Alumina						
113.8	0.34	3.18	200.0	0.32	1E+06	2E+06	880	4.50	0.012	25.0	302	90	4.86	Zirconia						

Force Calculations During Travel

PARAMETERS			
static friction coefficient	mu	-	0.2
exit angle of upper spring contact	ang	deg	45
exit angle of upper spring contact	ang	rad	0.785
final distance past start of exit angle	а	mm	1.00
radius of upper spring contact	rUmax	mm	1.59
spring constant at top mount's upper surface	kU	N/mm	7.5
max deflection of top mount's upper spring	dUmax	mm	2.0
final deflection of top mount's upper spring	dUfinal	mm	1.658
spring constant at top mount's lower surface	kL	N/mm	11.2
max deflection of top mount's lower surface	dLmax	mm	1.75
spring constant at bottom mount	kB	N/mm	10.0
max deflection of bottom mount's spring	dBmax	mm	0.5
supported mass	m	kg	2.5
supported weight	mg	Ν	24.5
TOP EAST KIN MOUNT			
ball contact force at end of travel	Bfinal	Ν	19.8
max ball contact force during travel (conservative)	Bmax	Ν	22.9
max upper spring contact force during travel	Umax	Ν	15
max lower spring contact force during travel	Lmax	Ν	19.6
max insertion force during travel	Fappmax	Ν	18.4
insertion force at end of travel (negative> self-slip)	Fappfinal	Ν	-2.1
retraction force at end of travel	Fretfinal	Ν	22.8
TOP WEST KIN MOUNT			
ball contact force at end of travel	Bfinal	Ν	14.9
max ball contact force during travel (conservative)	Bmax	Ν	18.0
max upper spring contact force during travel	Umax	Ν	15
max lower spring contact force during travel	Lmax	Ν	0.0
max insertion force during travel	Fappmax	Ν	9.6
insertion force at end of travel (negative> self-slip)	Fappfinal	Ν	-7.0
retraction force at end of travel	Fretfinal	Ν	21.8
BOTTOM KIN MOUNT			
max ball contact force during travel (conservative)	Bmax	N	5.0
max insertion force during travel	Fappmax	N	1.0
ΤΟΤΑΙ			_
max insertion force during travel	Fappmax	Ν	29.0
insertion force at end of travel (negative> self-slip)	Fappfinal	Ν	-8.0
retraction force at end of travel	Fretfinal	Ν	45.6

Result for Single Mount in Independent Test Stand