Design for Kinematic Mounts

In the design below, using $1 / 16$ " alumina or zirconia rods as spring contacts...

Spring Parameters:

Design Equations

Beam profile (curved bottom defined by equation, horizontal flat on top):

$$
y(x)=-2 \sqrt{\frac{3}{2} \frac{F}{\eta \sigma_{y} b}(L-x)}
$$

Beam length:

$$
L=\frac{3}{2} \frac{1}{\eta \sigma_{y}}\left(\frac{4}{5} E(1.15 \delta)\right)^{2 / 3}\left(\frac{F}{b}\right)^{1 / 3}
$$

- The adjustment factor 1.15 applied to δ adds a little extra length to help account for the discrepancy between the small deflection beam theory calculation and the actual large deflection behavior, as well as the practical necessity of non-zero thickness near the tip of the beam.
- Derivation of these design formulas is shown below.

Top Spring (which forces ball into groove)

Spring contact radius	$R_{S}=1.58 \mathrm{~mm}$
Max spring deflection	$\delta=2.0 \mathrm{~mm}$
Max spring force	$\mathrm{F}=15 \mathrm{~N}$
Yield stress	$\sigma_{\mathrm{y}}=880 \mathrm{MPa}$
Max allowed stress ratio	$\eta=0.55 \quad$ (i.e. 484 MPa)
Modulus	$\mathrm{E}=113 \mathrm{GPa}$
Spring beam width	$\mathrm{b}=4.5 \mathrm{~mm}$
Required beam length	$\mathrm{L}=16.25 \mathrm{~mm} \quad$ (calculated)

Bottom Spring (when present, counteracts weight of hanging mass)
Spring contact radius
$R_{S}=1.58 \mathrm{~mm}$
Max spring deflection
$\delta=1.75 \mathrm{~mm}$
Max spring force
$\mathrm{F}=2.0 \mathrm{~kg} * 9.81 \mathrm{~m} / \mathrm{s}=19.6 \mathrm{~N}$
Yield stress
Max allowed stress ratio
$\sigma_{y}=880 \mathrm{MPa}$
$\eta=0.55$ (i.e. 484 MPa)
Modulus
$\mathrm{E}=113 \mathrm{GPa}$
Spring beam width
$\mathrm{b}=4.5 \mathrm{~mm}$
Required beam length $\quad \mathrm{L}=16.25 \mathrm{~mm}$ (calculated)

Lonstut Shes "Court" Cutter Sophy

Constant siezss condition:

SPGZIFICATION of $F=k \delta$ (SiRing cunceationisties):
from $\delta=\frac{F L^{3}}{3 E I}, \quad$ approximate $\quad I \simeq \bar{I}=\frac{1}{L} \int_{0}^{L} I(x) d x$

$$
\begin{aligned}
& \Rightarrow \frac{F L^{4}}{3 E \delta}=\int_{0}^{L} \frac{1}{12} b(2 y(x))^{3} d x=\frac{2}{3} b\left(\frac{3}{2} \frac{F}{\eta \sqrt{y b}}\right)^{3 / 2} \int_{0}^{L}(L-x)^{3} d x \\
& =\left.\frac{2}{3} b\left(\frac{3}{2} \frac{F}{\eta \sigma b}\right)^{3 / 2}\left(-\frac{2}{5}(L-x)^{5 / 2}\right)\right|_{0} ^{L}=\frac{4}{15} b\left(\frac{3}{2} \frac{F}{\eta \gamma b b}\right)^{3 / 2} L \\
& \Rightarrow L^{3 / 2}=\frac{12}{15} \frac{E \delta}{F} b\left(\frac{3}{2} \frac{F}{\eta \sigma_{y} b}\right)^{3 / 2}=\frac{4}{5} E \delta F^{1 / 2} b^{-1 / 2}\left(\frac{3}{2} \frac{1}{\eta \sigma}\right)^{3 / 2} \\
& \Rightarrow L=\left(\frac{4}{5} E \delta\left(\frac{F}{b}\right)^{1 / 2}\right)^{2 / 3} \frac{3}{2} \frac{1}{\eta \sigma_{y}} \\
& \Rightarrow L=\frac{3}{2} \frac{1}{\eta \sqrt{7}}\left(\frac{4}{5} E \delta\right)^{2 / 3}\left(\frac{F}{b}\right)^{1 / 3} \$
\end{aligned}
$$

* Note that this design analysis tends to under peedret δ by about 15%. Thus it may be useful to replace δ with $\delta^{\mathcal{L}}=C \delta_{\text {depend, }}$, where

SETS THE REQUIRED SEAM LENGTH FOR A SPIZIFIED COMAINATION of $\eta \sigma_{y}=$ max fraction of ye f shes $E=$ modulus
$\delta=$ max deflection
$F=$ max force $c \approx 1.15$

$$
b \text { m bean width }
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { from } \quad \sigma=\frac{M y}{I} \\
\Rightarrow \eta \sigma_{y}=\frac{F(L-x) \quad y(x)}{\frac{1}{12} b(2 y(x))^{3}}
\end{array} \\
& =\frac{3}{2} \frac{F}{b} \frac{L-x}{y(x)^{2}} \Rightarrow y(x)=\sqrt{\frac{3}{2} \frac{F}{\eta_{f} b}(L-x)}
\end{aligned}
$$

Contact Stress Calculations

- For the top kinematic mounts (control X, Y, Z):
- The spherical ball (5/32" diameter, silicon nitride) rides in an internal radius cylindrical groove (Ti $6 \mathrm{Al}-4 \mathrm{~V}$) of radius 2.5 mm .
- The spring contacts are ceramic (alumina or zirconia) cylinders ($1 / 8^{\prime \prime}$ radius) riding on a generally planar guide surface (Ti 6Al-4V).
- For the bottom kinematic mounts (control X only):
- The ball ($1 / 2^{\prime \prime}$ diameter, silicon nitride) runs against a planar flat guide.

Sphere-on-Cylinder Contact																				
BALL			GROOVE																	
E1	nu1	D1	E2	nu2	R2	D2	Syc2	V1	V2	Q	A/B	1/A	-1/e dE/dE	a	theta	F (applied)	F	Pmax	\sim Taumax	~FOS2 (tresca)
GPa	-	mm	GPa	-	mm	mm	MPa	1/Pa	1/Pa	1/Pa	-	m	-	mm	deg	N	N	MPa	MPa	-
345.0	0.24	3.97	113.8	0.34	-2.50	-5.00	880	8.7E-13	$2.5 \mathrm{E}-12$	\#\#\#\#\#	0.206	0.019	1.5450	0.138	45	25.0	17.7	443	133	3.31
345.0	0.24	12.70	113.8	0.34	1E+06	2E+06	880	8.7E-13	$2.5 \mathrm{E}-12$	\#\#\#\#\#	1.000	0.013	0.7854	0.063	n/a	5.0	5.0	602	181	2.44
The value -1/e dE/de is from a lookup table (Puttock and Thwaite 1969).																				
Cylinder-on-Plane Contact																				
SPRING CONTACT			GUIDE SURFACE					WIDTH												
E1	nu1	D1	E2	nu2	R2	D2	Syc2	L	b	F	Pmax	\sim Taumax	~FOS2 (tresca)							
GPa	-	mm	GPa	-	mm	mm	MPa	mm	mm	N	MPa	MPa	-							
113.8	0.34	3.18	300.0	0.21	1E+06	2E+06	880	4.50	0.011	25.0	319	96	4.60	Alumina						
113.8	0.34	3.18	200.0	0.32	1E+06	2E+06	880	4.50	0.012	25.0	302	90	4.86	Zirconia						

Force Calculations During Travel

PARAMETERS			
static friction coefficient	mu	-	0.2
exit angle of upper spring contact	ang	deg	45
exit angle of upper spring contact	ang	rad	0.785
final distance past start of exit angle	a	mm	1.00
radius of upper spring contact	rUmax	mm	1.59
spring constant at top mount's upper surface	kU	N / mm	7.5
max deflection of top mount's upper spring	dUmax	mm	2.0
final deflection of top mount's upper spring	dUfinal	mm	1.658
spring constant at top mount's lower surface	kL	N / mm	11.2
max deflection of top mount's lower surface	dLmax	mm	1.75
spring constant at bottom mount	kB	N / mm	10.0
max deflection of bottom mount's spring	dBmax	mm	0.5
supported mass	m	kg	2.5
supported weight	mg	N	24.5
TOP EAST KIN MOUNT			
ball contact force at end of travel	Bfinal	N	19.8
max ball contact force during travel (conservative)	Bmax	N	22.9
max upper spring contact force during travel	Umax	N	15
max lower spring contact force during travel	Lmax	N	19.6
max insertion force during travel	Fappmax	N	18.4
insertion force at end of travel (negative --> self-slip)	Fappfinal	N	-2.1
retraction force at end of travel	Fretfinal	N	22.8
TOP WEST KIN MOUNT			
ball contact force at end of travel	Bfinal	N	14.9
max ball contact force during travel (conservative)	Bmax	N	18.0
max upper spring contact force during travel	Umax	N	15
max lower spring contact force during travel	Lmax	N	0.0
max insertion force during travel	Fappmax	N	9.6
insertion force at end of travel (negative --> self-slip)	Fappfinal	N	-7.0
retraction force at end of travel	Fretfinal	N	21.8
BOTTOM KIN MOUNT			
max ball contact force during travel (conservative)	Bmax	N	5.0
max insertion force during travel	Fappmax	N	1.0
TOTAL			
max insertion force during travel	Fappmax	N	29.0
insertion force at end of travel (negative --> self-slip)	Fappfinal	N	-8.0
retraction force at end of travel	Fretfinal	N	45.6

Result for Single Mount in Independent Test Stand

